返回

一步一步写算法(之排序二叉树删除-3)

发布时间:2023-09-20 03:13:11 269


    3 普通节点的删除

3.1 删除的节点没有左子树,也没有右子树

     测试用例1: 删除节点6

/*
*
* 10 ======> 10
* / \ \
* 6 15 15
*
*/

static void test8()
{
TREE_NODE* pTreeNode = NULL;
assert(TRUE == insert_node_into_tree(&pTreeNode, 10));
assert(TRUE == insert_node_into_tree(&pTreeNode, 6));
assert(6 == pTreeNode->left_child->data);
assert(TRUE == insert_node_into_tree(&pTreeNode, 15));
assert(TRUE == delete_node_from_tree(&pTreeNode, 6));
assert(NULL == pTreeNode->left_child);
free(pTreeNode->right_child);
free(pTreeNode);
}

    测试用例2: 删除节点15

/*
*
* 10 ======> 10
* / \ /
* 6 15 6
*
*/

static void test9()
{
TREE_NODE* pTreeNode = NULL;
assert(TRUE == insert_node_into_tree(&pTreeNode, 10));
assert(TRUE == insert_node_into_tree(&pTreeNode, 6));
assert(TRUE == insert_node_into_tree(&pTreeNode, 15));
assert(15 == pTreeNode->right_child->data);
assert(TRUE == delete_node_from_tree(&pTreeNode, 15));
assert(NULL == pTreeNode->right_child);
free(pTreeNode->right_child);
free(pTreeNode);
}

    那么代码应该怎么编写呢?

STATUS _delete_node_from_tree(TREE_NODE* pTreeNode)
{
TREE_NODE* pLeftMax;

if(NULL == pTreeNode-> left_child && NULL == pTreeNode->right_child){
if(pTreeNode == pTreeNode->parent->left_child)
pTreeNode->parent->left_child = NULL;
else
pTreeNode->parent->right_child = NULL;
}

free(pTreeNode);
return TRUE;
}


   

3.2 删除的节点有左子树,没有右子树

    测试用例1: 测试节点6

/*
*
* 10 ======> 10
* / /
* 6 3
* /
* 3
*/

static void test10()
{
TREE_NODE* pTreeNode = NULL;
assert(TRUE == insert_node_into_tree(&pTreeNode, 10));
assert(TRUE == insert_node_into_tree(&pTreeNode, 6));
assert(TRUE == insert_node_into_tree(&pTreeNode, 3));
assert(TRUE == delete_node_from_tree(&pTreeNode, 6));
assert(3 == pTreeNode->left_child->data);
assert(pTreeNode = pTreeNode->left_child->parent);
free(pTreeNode->left_child);
free(pTreeNode);
}

    测试用例2: 删除节点15

/*
*
* 10 ======> 10
* \ \
* 15 12
* /
* 12
*/

static void test11()
{
TREE_NODE* pTreeNode = NULL;
assert(TRUE == insert_node_into_tree(&pTreeNode, 10));
assert(TRUE == insert_node_into_tree(&pTreeNode, 15));
assert(TRUE == insert_node_into_tree(&pTreeNode, 12));
assert(TRUE == delete_node_from_tree(&pTreeNode, 15));
assert(12 == pTreeNode->right_child->data);
assert(pTreeNode = pTreeNode->right_child->parent);
free(pTreeNode->right_child);
free(pTreeNode);
}

    添加左子树不为空,右子树为空的处理代码,如下所示:

STATUS _delete_node_from_tree(TREE_NODE* pTreeNode)
{
TREE_NODE* pLeftMax;

if(NULL == pTreeNode-> left_child && NULL == pTreeNode->right_child){
if(pTreeNode == pTreeNode->parent->left_child)
pTreeNode->parent->left_child = NULL;
else
pTreeNode->parent->right_child = NULL;
}else if(NULL != pTreeNode->left_child && NULL == pTreeNode->right_child){
pTreeNode->left_child->parent = pTreeNode->parent;

if(pTreeNode == pTreeNode->parent->left_child)
pTreeNode->parent->left_child = pTreeNode->left_child;
else
pTreeNode->parent->right_child = pTreeNode->left_child;
}

free(pTreeNode);
return TRUE;
}


   

3.3 删除的节点左子树为空,右子树节点不为空

    测试用例1: 删除数据6

/*
*
* 10 ======> 10
* / /
* 6 8
* \
* 8
*/

static void test12()
{
TREE_NODE* pTreeNode = NULL;
assert(TRUE == insert_node_into_tree(&pTreeNode, 10));
assert(TRUE == insert_node_into_tree(&pTreeNode, 6));
assert(TRUE == insert_node_into_tree(&pTreeNode, 8));
assert(TRUE == delete_node_from_tree(&pTreeNode, 6));
assert(8 == pTreeNode->left_child->data);
assert(pTreeNode = pTreeNode->left_child->parent);
free(pTreeNode->left_child);
free(pTreeNode);
}

    测试用例2: 删除数据15

/*
*
* 10 ======> 10
* \ \
* 15 20
* \
* 20
*/

static void test13()
{
TREE_NODE* pTreeNode = NULL;
assert(TRUE == insert_node_into_tree(&pTreeNode, 10));
assert(TRUE == insert_node_into_tree(&pTreeNode, 15));
assert(TRUE == insert_node_into_tree(&pTreeNode, 20));
assert(TRUE == delete_node_from_tree(&pTreeNode, 15));
assert(20 == pTreeNode->right_child->data);
assert(pTreeNode = pTreeNode->right_child->parent);
free(pTreeNode->right_child);
free(pTreeNode);
}

    添加左子树为空,右子树不为空的处理情形。代码如下:

STATUS _delete_node_from_tree(TREE_NODE* pTreeNode)
{
TREE_NODE* pLeftMax;

if(NULL == pTreeNode-> left_child && NULL == pTreeNode->right_child){
if(pTreeNode == pTreeNode->parent->left_child)
pTreeNode->parent->left_child = NULL;
else
pTreeNode->parent->right_child = NULL;
}else if(NULL != pTreeNode->left_child && NULL == pTreeNode->right_child){
pTreeNode->left_child->parent = pTreeNode->parent;

if(pTreeNode == pTreeNode->parent->left_child)
pTreeNode->parent->left_child = pTreeNode->left_child;
else
pTreeNode->parent->right_child = pTreeNode->left_child;
}else if(NULL == pTreeNode->left_child && NULL != pTreeNode->right_child){
pTreeNode->right_child->parent = pTreeNode->parent;

if(pTreeNode == pTreeNode->parent->left_child)
pTreeNode->parent->left_child = pTreeNode->right_child;
else
pTreeNode->parent->right_child = pTreeNode->right_child;
}

free(pTreeNode);
return TRUE;
}


    3.4 删除的节点左右子树均不为空,不过又要分为两种情形:

1) 左节点是删除节点左侧的最大节点 (删除节点6)

/*
*
* 10 ======> 10
* / /
* 6 5
* / \ \
* 5 8 8
*/

static void test14()
{
TREE_NODE* pTreeNode = NULL;
assert(TRUE == insert_node_into_tree(&pTreeNode, 10));
assert(TRUE == insert_node_into_tree(&pTreeNode, 6));
assert(TRUE == insert_node_into_tree(&pTreeNode, 5));
assert(TRUE == insert_node_into_tree(&pTreeNode, 8));
assert(TRUE == delete_node_from_tree(&pTreeNode, 6));
assert(5 == pTreeNode->left_child->data);
assert(pTreeNode = pTreeNode->left_child->parent);
assert( 8 == pTreeNode->left_child->right_child->data);
assert(pTreeNode->left_child = pTreeNode->left_child->right_child->parent);
free(pTreeNode->left_child->right_child);
free(pTreeNode->left_child);
free(pTreeNode);
}

   

2) 左节点不是删除节点左侧的最大节点(删除节点5)

/*
*
* 10 ======> 10
* / /
* 5 4
* / \ / \
* 2 6 2 6
* \
* 4
*/

static void test15()
{
TREE_NODE* pTreeNode = NULL;
assert(TRUE == insert_node_into_tree(&pTreeNode, 10));
assert(TRUE == insert_node_into_tree(&pTreeNode, 5));
assert(TRUE == insert_node_into_tree(&pTreeNode, 2));
assert(TRUE == insert_node_into_tree(&pTreeNode, 4));
assert(TRUE == insert_node_into_tree(&pTreeNode, 6));
assert(TRUE == delete_node_from_tree(&pTreeNode, 5));
assert(4 == pTreeNode->left_child->data);
assert(NULL == pTreeNode->left_child->left_child->right_child);
free(pTreeNode->left_child->left_child);
free(pTreeNode->left_child->right_child);
free(pTreeNode->left_child);
free(pTreeNode);
}

    那么针对这两种类型,我们的代码究竟应该怎么处理呢?

STATUS _delete_node_from_tree(TREE_NODE* pTreeNode)
{
TREE_NODE* pLeftMax;

if(NULL == pTreeNode-> left_child && NULL == pTreeNode->right_child){
if(pTreeNode == pTreeNode->parent->left_child)
pTreeNode->parent->left_child = NULL;
else
pTreeNode->parent->right_child = NULL;
}else if(NULL != pTreeNode->left_child && NULL == pTreeNode->right_child){
pTreeNode->left_child->parent = pTreeNode->parent;

if(pTreeNode == pTreeNode->parent->left_child)
pTreeNode->parent->left_child = pTreeNode->left_child;
else
pTreeNode->parent->right_child = pTreeNode->left_child;
}else if(NULL == pTreeNode->left_child && NULL != pTreeNode->right_child){
pTreeNode->right_child->parent = pTreeNode->parent;

if(pTreeNode == pTreeNode->parent->left_child)
pTreeNode->parent->left_child = pTreeNode->right_child;
else
pTreeNode->parent->right_child = pTreeNode->right_child;
}else{
pLeftMax = find_max_node(pTreeNode->left_child);
if(pLeftMax == pTreeNode->left_child){

if(pTreeNode == pTreeNode->parent->left_child)
pTreeNode->parent->left_child = pTreeNode->left_child;
else
pTreeNode->parent->right_child = pTreeNode->left_child;

pTreeNode->left_child->parent = pTreeNode->parent;
pTreeNode->left_child->right_child = pTreeNode->right_child;
pTreeNode->right_child->parent = pTreeNode-> left_child;

}else{
pTreeNode->data = pLeftMax->data;
pLeftMax->parent->right_child = pLeftMax->left_child;
pLeftMax->left_child->parent = pLeftMax->parent;
pTreeNode = pLeftMax;
}
}

free(pTreeNode);
return TRUE;
}


结束总结:

    上面的过程记录了我们的代码是怎么一步一步走过来的。最后我们给出一份完整的节点删除代码:

STATUS _delete_node_from_tree(TREE_NODE* pTreeNode)
{
TREE_NODE* pLeftMax;

if(NULL == pTreeNode-> left_child && NULL == pTreeNode->right_child){
if(pTreeNode == pTreeNode->parent->left_child)
pTreeNode->parent->left_child = NULL;
else
pTreeNode->parent->right_child = NULL;
}else if(NULL != pTreeNode->left_child && NULL == pTreeNode->right_child){
pTreeNode->left_child->parent = pTreeNode->parent;

if(pTreeNode == pTreeNode->parent->left_child)
pTreeNode->parent->left_child = pTreeNode->left_child;
else
pTreeNode->parent->right_child = pTreeNode->left_child;
}else if(NULL == pTreeNode->left_child && NULL != pTreeNode->right_child){
pTreeNode->right_child->parent = pTreeNode->parent;

if(pTreeNode == pTreeNode->parent->left_child)
pTreeNode->parent->left_child = pTreeNode->right_child;
else
pTreeNode->parent->right_child = pTreeNode->right_child;
}else{
pLeftMax = find_max_node(pTreeNode->left_child);
if(pLeftMax == pTreeNode->left_child){

if(pTreeNode == pTreeNode->parent->left_child)
pTreeNode->parent->left_child = pTreeNode->left_child;
else
pTreeNode->parent->right_child = pTreeNode->left_child;

pTreeNode->left_child->parent = pTreeNode->parent;
pTreeNode->left_child->right_child = pTreeNode->right_child;
pTreeNode->right_child->parent = pTreeNode-> left_child;

}else{
pTreeNode->data = pLeftMax->data;
pLeftMax->parent->right_child = pLeftMax->left_child;
pLeftMax->left_child->parent = pLeftMax->parent;
pTreeNode = pLeftMax;
}
}

free(pTreeNode);
return TRUE;
}

STATUS delete_node_from_tree(TREE_NODE** ppTreeNode, int data)
{
TREE_NODE* pTreeNode;
TREE_NODE* pLeftMax;

if(NULL == ppTreeNode || NULL == *ppTreeNode)
return FALSE;

pTreeNode = find_data_in_tree_node(*ppTreeNode, data);
if(NULL == pTreeNode)
return FALSE;

if(*ppTreeNode == pTreeNode){

if(NULL == pTreeNode->left_child && NULL == pTreeNode->right_child){
*ppTreeNode = NULL;
}else if(NULL != pTreeNode->left_child && NULL == pTreeNode->right_child){
*ppTreeNode = pTreeNode->left_child;
pTreeNode->left_child->parent = NULL;
}else if(NULL == pTreeNode->left_child && NULL != pTreeNode->right_child){
*ppTreeNode = pTreeNode->right_child;
pTreeNode->right_child->parent = NULL;
}else{
pLeftMax = find_max_node(pTreeNode->left_child);
if(pLeftMax == pTreeNode->left_child){
*ppTreeNode = pTreeNode->left_child;
(*ppTreeNode)->right_child = pTreeNode->right_child;
(*ppTreeNode)->right_child->parent = *ppTreeNode;
(*ppTreeNode)->parent = NULL;
}else{
pTreeNode->data = pLeftMax->data;
pLeftMax->parent->right_child = pLeftMax->left_child;
pLeftMax->left_child->parent = pLeftMax->parent;
pTreeNode = pLeftMax;
}
}

free(pTreeNode);
return TRUE;
}

return _delete_node_from_tree(pTreeNode);
}



特别声明:以上内容(图片及文字)均为互联网收集或者用户上传发布,本站仅提供信息存储服务!如有侵权或有涉及法律问题请联系我们。
举报
评论区(0)
按点赞数排序
用户头像
精选文章
thumb 中国研究员首次曝光美国国安局顶级后门—“方程式组织”
thumb 俄乌线上战争,网络攻击弥漫着数字硝烟
thumb 从网络安全角度了解俄罗斯入侵乌克兰的相关事件时间线
下一篇
一步一步写算法(之单词统计) 2023-09-20 00:14:46